
Access Cost Estimation for Unified Grid Storage Systems∗

Kurt Stockinger1, Heinz Stockinger1, Lukasz Dutka2,3,
Renata Slota3, Darin Nikolow3, Jacek Kitowski2,3

1 CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
2 ACC Cyfronet-AGH, ul. Nawojki 11, Cracow, Poland

3 Institute of Computer Science, AGH-UST, al. Mickiewicza 30, Cracow, Poland

Abstract

In typical Data Grids large amounts of replicated data
are stored all over the globe in different storage systems
with access latencies ranging from seconds to hours. The
task of a replica management system is not only to keep
track of the replicas but also to select those replicas that
can be accessed by an application program with a mini-
mal response or transfer time. Most wide-area replication
research focuses on network-based replica selection. How-
ever, our past experience with Data Grids has shown that
often hierarchical storage systems are the main bottleneck
rather than network links. This is due to the fact that ac-
cess latencies of hierarchical storage systems can be of the
order of seconds up to hours in case the data resides on a
tape that is not mounted yet.

In this paper we give an overview of our replica man-
agement framework called Reptor and a storage system cost
estimator that is used. Furthermore, we give details on ac-
cess estimation of file replicas that reside on hierarchical
storage systems. The results show that the access estimates
provide a good basis for a replica management system to
perform efficient replica selection.

1 Introduction

Certain scientific application domains such as High-
Energy Physics or Earth Observation [9] are expected to
produce several Petabytes of data that are analyzed and
evaluated by scientists all over the globe. In order to achieve
high levels of availability and fault tolerance, as well as

∗This work was partially funded by the European Commission program
IST-2000-25182 through the EU DataGrid Project, by the IST-2001-32243
project “CrossGrid” and by the Polish Committee for Scientific Research
(KBN) 112/E-356/SPB/5.PR UE/DZ 224/2002-2004 project. AGH grant
is also acknowledged.

minimal access times for these large data volumes, data
replication is applied very frequently. Several Grid projects
have implemented data replication systems that handle parts
of the requirements.

Data is mostly stored on disks and mass storage systems
with different access latencies. What is more, these stor-
age systems are connected via networks with different ef-
fective bandwidth that show different peaks throughout the
day. Without specific monitoring tools of various Grid re-
sources, it is difficult to predict the access time of data in-
tensive jobs in such a heterogeneous environment. For in-
stance, access latencies of mass storage systems can be of
the order of seconds up to hours in case the data resides on
a tape that is not mounted yet.

Within the European DataGrid project [9] we designed
and developed a replica management framework called
Reptor [12] which provides both network and storage ac-
cess estimation for distributed replicas. This performance
information can be used by a Grid scheduler to submit jobs
to the best available Grid resources. In addition, our system
allows for optimal cost-based replica selection during the
run time of a job.

In this paper we discuss one implementation of a stor-
age access estimator that we developed within the European
CrossGrid project [4]. We detail the replica selection model
and the storage access cost parameters for estimating the
access latencies of file replicas that reside on hierarchical
storage systems distributed all over the globe.

We thus make several important contributions:

• Firstly, we show the effectiveness of replica selection
based on storage cost estimation. The results show
that the access estimates provide a good basis for the
Replica Manager to perform efficient replica selection.

• Secondly, we demonstrate interoperability between
two major European Grid projects using standardized

1



programming techniques based on web service tech-
nology.

The paper is organized as follows. In Section 2 we pro-
vide an overview of the cost model that is used for the
replica selection process. Emphasis is put on the cost esti-
mations for hierarchical storage systems. Section 3 outlines
architectural details of the replica management framework
(including the replica selection process) and the cost estima-
tor based on a component expert system. Implementation
details and interoperability issues are discussed in Section
4. Experimental results are shown in Section 5. After some
related work in Section 6, we conclude the paper and pro-
vide some insight into future work.

2 Model for Cost Estimation

Access estimation for distributed and replicated files in a
Data Grid requires a specific model that we describe here.
This model is then used by the replica management system
to select replicas as well as by the estimator components
that provide the necessary information on file access costs.

2.1 A General Cost Model

For the access cost model we assume that data files are
partially replicated to several sites (hosting data stores) con-
nected via wide-area networks. In such an environment end-
users usually want to access one of the replicas as quickly
as possible, regardless of the replica location. As discussed
in [12], it is up to the replica management software system
to select the “best” file that has the minimal access costs.
Based on previous work [18], we define replica selection as
follows:

Replica selection is the process of selecting a single
“best” replica from a set of identical replicas where best
means that the response time for accessing a file locally is
minimal. If replicas are only available at remote sites, the
access time also includes the data transfer time from the re-
mote to the local site.

We also assume that a file should be accessed locally at
a given site and thus we want to minimize the transfer costs
from a remote site to a given site. In [18] we identified two
main performance parameters: network and storage system
costs. We can now define optimal replica select as the fol-
lowing minimization problem:

min(file transferi(sitelocal, siteremotei)) (1)

where the file transfer is defined as follows:

file transferi = access costnetwork+access coststorage

(2)

In this paper, we only concentrate on the storage cost es-
timation. Note, for simplicity we assume that Grid applica-
tions request only single files and leave the case of multiple
file requests for future work.

2.2 Access costs for HSM systems

In the following section, we outline the cost estimation
for data servers, in particular for Hierarchical Storage Man-
agers (HSM). Thus, we extend Equation 2 and give details
about the access cost of storage.

The access cost for HSM systems depends on many fac-
tors, like current load of the HSM system, number of avail-
able drives and their types, localization of the data (disk
cache, MOD, tape) and the data compression rate. We as-
sume that the access cost, access coststorage, is defined by
the start-up latency time, timelatency, and the transfer time,
timetransfer, of the HSM system itself. The latter is de-
fined as the time for making data locally available and it is
needed for serving data to the Grid environment. The net-
work latency is not part of the access cost estimation for
HSM.

Generally, timelatency for HSM can be broken into the
following elements:

• tw – waiting time: defines the waiting time for nec-
essary resources to become idle. These resources can
be a tape drive, the tape itself or the robot arm. The
waiting time depends on the previous requests in the
queue.

• tu – unmounting time: time to unmount a tape in or-
der to free a drive for the current request.

• tm – mounting time: the time to mount a tape into a
drive and get it ready. It depends on the robot and the
drive performance.

• tp – positioning time: the time of positioning from the
current block to the first block (referenced as a destina-
tion block) of the file on a tape. It depends on the type
of media, the current and destination block numbers.

• tt – media transfer time from removable medium
(tape or plate if the medium is an optical disk) to disk
cache. It depends on the drive transfer rate and the file
size.

• td – disk cache start-up latency. This is the la-
tency experienced by the client when the file is in the
disk cache. The client is assumed to be local, so the
network latency is 0 seconds. It mainly depends on
the hardware parameters of the hard disk drive (seek
times).

2



For particular cases some values can be equal to 0. Those
concern files located already in the caches, for which all
times except td are equal to zero. The access time is also
zero when the tape is mounted and idle, tw = tm = 0.

timetransfer depends on the HSM disk cache transfer
rate (transferratecache, the file size (sizefile) and the ac-
cess method (NFS or FTP).

The final formula depends on HSM type and for the
Legato DiskXtender HSM system, for which we imple-
mented the access cost estimation function, is as follows:

access coststorage = timelatency + timetransfer (3)

where:

timelatency = tw + tu + tm + tp + tt + td (4)

and

timetransfer = sizefile/transfer ratecache (5)

3 Architecture

In the following section we briefly describe the architec-
ture of the entire replica management framework that con-
tains a replica optimization service (from EDG) as well as
the HSM estimator (from CrossGrid).

3.1 Replica Management System

In EDG, we have designed and developed a replica man-
agement system that takes care of replicating files between
several storage locations, locating replicas and selection
“best” replicas as discussed in Section 2.1. The entire sys-
tem uses several external services and is briefly depicted in
Figure 1.

We do not go into the design details and refer the reader
to [12]. Here we only concentrate on the components and
services that are necessary for the replica selection process.
It is important to point out that Figure 1 represents the user’s
point of view and thus all interaction with services like a
Replica Optimization Service is done via the replica man-
agement service interface.

For the discussion in this paper, one only needs to con-
sider the following modules and components:

• The Core module co-ordinates the main functionality
of the replica management system, which is replica
creation, deletion, and cataloging by interacting with
third party modules. These external modules include
transport services, replica location services, meta-data
services for storing replication meta-data such as file
meta-data (size, checksum, etc), management meta-
data, and security meta-data (such as access control

ReplicaInitiation

AccessHistory

   Processing

Service
Management

Replica

�������������
�������������
�������������
�������������

Collection Optimization

Core

Sessions Consistency

Subscription

Transport

MetaData
Catalog

Service
Replica Location

Security

User

Replica Selection

Figure 1. Main Components of the Replica
Management System. Shaded components
represented components that are imple-
mented.

lists), and processing services that allow pre- and post-
processing of files being replicated.

• The goal of the Optimization component (also re-
ferred to as the Replica Optimization Service (cf. Sec-
tion 3.2) is to minimize file access times by pointing
access requests to appropriate replicas and pro-actively
replicating frequently used files based on access statis-
tics gathered.

• The Security module manages the required user au-
thentication and authorization, in particular, issues per-
taining to whether a user is allowed to create, delete,
read, and write a file.

3.2 Replica Optimization Service

The goal of the optimization service is to select the best
replica with respect to network and storage access latencies.
In other words, if for a given file several replicas exist, the
optimization service determines the replica that should be
accessed from a given location. Similarly, the optimization
service might also be used to determine the best location for
new replicas.

The Replica Optimization Service is implemented as a
light-weight web service (called Optor). It gathers informa-
tion from the European DataGrid (EDG) [9] network mon-
itoring service and the CrossGrid [4] Cost Estimation (also
referred to as “Storage Element monitoring”) service about
their network and storage access latencies. Based on this
information Optor takes the decision about which network
link should be used in order to minimize the transfer time
between two end points as described in [2].

3



Apart from selecting replicas and storage locations Optor
also provides methods to retrieve estimated file access costs.
These can be exploited by other Grid services, such as meta
schedulers like the EDG Resource Broker [10]. Based on
the information obtained by Optor the broker can schedule
jobs to sites that allow efficient file access while maximiz-
ing the overall throughput. Thus, the Replica Manager, in
particular its optimization component, assists the Resource
Broker in the job scheduling process.

The interaction of the main components of the Replica
Manager Reptor is depicted in Figure 2. For this paper, we
are mainly interested in the interaction between the Replica
Optimization Service and the SE Monitor/Cost Estimation
Service. Note that Optor provides an interface called “get-
SECost” that either receives information from SE Monitor
or from SE Cost Estimator. In our current model, we use a
Cost Estimator as described in the next section.

Network Monitor

Information Service

Replica Manager Client

Cost Estimtion Service

Storage
Element (SE)

Replica Location/Metadata Service

Replica Optimization Service

SE Monitor/

Figure 2. Interaction of Replica Manager with
other Grid services.

3.3 Access Estimation for Hierarchical
Storage Systems

In this section, we give details on a cost estimation ser-
vice. As mentioned in previous sections, the cost estimation
of the storage access is one of the most important parts in
the entire replica selection process. However, estimation
strategies strongly depend on many external factors, espe-
cially on device types, e.g. for Hierarchical Storage Man-
agers (HSM) they are different from those for disk drives,
or for databases in comparison with estimation for raw files.
That fact is very important due to the heterogeneity of the
storage systems used in Grid environments.

Since the internal organization of the storage system is
hidden from the estimation service clients, there should be

an additional layer selecting the best estimator for a partic-
ular context, i.e. for each storage type there is a different
estimator. To cope with that challenge a Component-Expert
Architecture (CEA) [6, 8, 7] is proposed with the general
scheme depicted in Figure 3.

 

Rule 1 Rule 2 Rule 3

Rule 4 Rule 5 Rule 6

Rul e
n-2

Rul e
n-1

…….……………………..

���


��

Component
(TID1, SPECe)
Component

(TID1, SPECd)
Component

(TID1, SPECa)

Component
(TID1, SPECa)

Component
(TID2, SPECb)

Component
(TID3, SPECg)
Component

(TID3, SPECe)
Component

(TID3, SPECd)
Component

(TID3, SPECa)

Component
(TID1, SPECe)
Component

(TID1, SPECd)
Component

(TID1, SPECa)

Component
(TID1, SPECe)
Component

(TID1, SPECd)
Component

(TID1, SPECa)

Component
(TID1, SPECe)
Component

(TID1, SPECd)
Component

(TID1, SPECa)
���


��




Get the best component
of type TID1 for Env1

Type:  T I D 3

A ttr ibute_1 = V alue_1
A ttr ibute_2 = V alue_2
.........................

A ttr ibute_n = V alue_n

Com
ponent

specialization
SPECa

Component
(TID1, Env1)

Components Container

Com
ponent type TID1

Com
ponent type TID2

Com
ponent type TID3



Rule-Based
Expert System

Expert
Component

Management
Subsystem

Application oriented
Component-Expert 

Architecure 

TID2, Env2

TID3, Env3

TID2, Env3

Code of the component

Rule Container

External 
Knowleadge

Base

Run deduction

process

Uses found
component

Th
e b

es
t

co
mpo

ne
nt

Env1={Attribute_1=Value_1,
Attribute_2=Value_2, ... , Attribute_k=Value_k}

Rule
n

Figure 3. General connection diagram in
Component-Expert Architecture.

The proposed CEA allows building very scalable sys-
tems based on independent components, which, similarly
to popular plug-ins, can easily be registered in the system
at any time. The most powerful feature of that architecture
is the possibility to transfer the responsibility of the com-
ponent selection. In the classical component architecture
[19] the components are selected by developers during the
development process and their choice is compiled into the
code. In CEA the task of component selection is entrusted
to an additional module called Rule-Based Expert System
(see Figure 3). That module decides on-the-fly which com-
ponent is the most suitable for a current context. Thus, the
decision is taken by a previously prepared set of rules and
is based on the following factors (see Figure 3): the current
context (Call-Environment), a classification of all registered
components prepared previously by the developers (Com-
ponent Specialization) and additional information available
from external knowledge bases. In practical implementa-
tions, e.g. [7], these rules first try to eliminate inappropriate
components (components, that are specialized for other pur-
poses) and finally choose the best one from all components
fulfilling particular requirements. The development of the
rules should be based on practical experience of a human-
expert; during the run-time the knowledge of the system
can be extended by modification of the external knowledge
base.

4



For the estimation purpose of the data access cost for
Grid-enabled storage, CEA is used as a framework man-
aging a set of estimators and taking over the responsibility
for the selection of the most adequate estimator. The esti-
mators are implemented as CEA components. They differ
from each other by the component specialization (e.g., esti-
mators for HSMs, disk drives, optical devices, etc.) but the
decision concerning the best estimator is taken during the
run time of the system by means of a previously prepared
rule set.

Data Access 
Estimator Storage Element 

Common Client 
Library				

<<Library>>

Component-Expert 
Subsystem

ToolsLib
<<Library>>

SOAPCG
<<Library>>

CEComponent Set

RulesSet 

<<Library>>

GridFTP 
Wrapper

GridFTP
Server

Replica Manager 

Figure 4. Component dependencies dia-
gram in the CrossGrid environment apply-
ing a Component-Expert Architecture. The
“Replica Manager” component refers to the
Replica Optimization Service that acts as a
client of the system.

CEA has been used in the CrossGrid [5] project to man-
age the estimators as well as to manage data access han-
dlers. As a result, an extremely flexible and unified data
access platform has been developed, which can easily be ex-
panded by additional components (plug-ins). Furthermore,
the newly registered components can immediately be ex-
ploited in the appropriate context. In Figure 4 the UML
model of the dependencies between the components realiz-
ing the CEA in the CrossGrid environment is shown.

The ’Component-Expert Subsystem’ component as well
as the ’RulesSet’ and ’CEComponent Set’ packages are re-
sponsible for the selection of the most proper estimator or
data handler depending on a context (Fig. 4). The ’Stor-
age Element’ component functions as the external knowl-
edge provider. It provides all precise information on the
current configuration and state of the storage device keep-
ing the particular data object (the type of the device, the
device vendor and the entire information important for the
decision process). The final decision is taken by ’RulesSet’
and further processed by ’Component-Expert Subsystem’.

3.4 Simulating HSM Access Costs

We estimate the access cost by simulating the HSM sys-
tem. We treat the HSM system as a Gray Box, which means
that we have some knowledge about how it works inter-
naly. This knowledge is gathered by observing the HSM
system behaviour as well as from the available documen-
tation. Based on this knowledge a simulation model of the
HSM system has been developed. The model is based on the
fact that the process of serving a request by the HSM system
goes through different stages (waiting, unmounting, mount-
ing, positioning, transferring). The transition between the
stages is specified by the state transition diagram which is
shown in Figure 5 and has been described in detail in [13].

Waiting

LoadingIn use

Waiting before
move to slot 

Positioning

Waiting before 
move to drive

idle
Move to

slot

Move to
drive

Request
done

Request
arrival

Unmount

Figure 5. State transition diagram for HSM
systems.

The estimation system consists of Monitor and Simulator
modules. The Monitor module collects essential informa-
tion from the HSM (about its current state, the queue state,
and about the file which the access cost is estimated). The
Simulator module simulates future state changes using this
information and the mensioned above model of the HSM
system in order to estimate access cost for the file.

The simulation is event driven. At the begining of sim-
ulation, depending on the estimation request and the cur-
rent state of the HSM system, one or more future events,
associated with the fact that a certain stage has just been
completed, are scheduled and placed into an event queue.
The number of events is equal to the number of real re-
quests being processed by the system plus one for the esti-
mated request. The simulation algorithm then picks the next
event from the event queue and schedules zero or one future
events according to the mentioned state transition diagram.
No event is scheduled for a request that has passed the last
stage (transfering). When the last stage for the estimated
request is over, the simulation is stoped and the simulated
cost is returned.

For each stage, except the waiting stage, the time to com-
plete is estimated by using the appropriate model for that

5



stage. The waiting stage completion time is obtained auto-
matically during the simulation.

The accuracy of the estimation depends on the accuracy
of estimation of the time-to-complete for each stage except
the waiting stage. The main source of inaccuracy is the
time-to-complete estimation for the mounting, positioning
and transferring stage.

The mounting time depends on the contamination of
tapes and drives. It has been observed that sometimes the
process of becoming on-line for a tape drive takes longer
than specified. A few years ago, the same drives had quite
predictable mounting time. The estimation model assumes
that the mounting time is constant for the given library-drive
pair.

The positioning time for DLT tapes is estimated by us-
ing the low cost seek model proposed by Sandstå and Mid-
straum [15]. Again, the contamination can influence the ac-
curacy, by causing more “recover from error” condition to
occur increasing the time. The fluctuation of data compres-
sion rate along the track also decreases the accuracy. An-
other source is the unpredictable occurrence of bad blocks
along the tape.

The transfer time from the removal media to the disk
cache depends mainly on the file size and the transfer rate
of the tape drive (we assume the disk cache has a higher
rate). The transfer rate itself depends on the compression
rate of the stored data. Data with higher compression rate
have higher transfer rate. The ratio of the transfer rate for
data which is well compressible to the transfer rate for data
which is not compressible is usually about 2. The load of
CPU and I/O (because of many requests issued to the sys-
tem at the same time), in turn, can cause that the effective
transfer rate to decrease. However, this is rarely the case
for well configured HSM systems. The current estimation
model assumes a constant transfer rate for a given type of
drive.

The access cost estimation function is implemented for
the Legato DiskXtender HSM system. An effort to adopt it
for CASTOR [3] is undergoing. All these estimators are im-
plemented as independent components compatible with the
Component-Expert Architecture, thus they are registered
in the CEComponentSet (see Figure 3), which fulfils the
Components Container (see Figure 4) role. The decision of
their usage is taken by CEXS together with RuleSet, which
are shown in Figure 4.

4 Implementation Details and Discussion

One of the main achievements of this work is the in-
teroperability of services and components provided by the
EU DataGrid as well as the EU CrossGrid projects. In the
cost estimation architecture, the main interaction is between
the Replica Optimization Service and the Cost Estimator,

where the former acts as a client of the later.
In order to allow for an easy interoperability of the ser-

vices, both services (Replica Optimization Service and Cost
Estimation Service) use web service technologies and com-
munication via SOAP. The main interface is through the
method “getSECost” where the Replica Optimizer requests
the access cost of certain files located on a Storage Element.
In more detail, the Replica Manager (the top level entry
point for an end-user as pointed out in Figure 1) provides a
client interface “listBestFile” and interacts with the Replica
Optimization service for obtaining the transfer costs of a
given file.

The Replica Optimization Service is implemented as a
Java web service based on a Tomcat servlet container and
AXIS SOAP for client-server communication. Thus, the
Replica Manager client communicates through AXIS SOAP
with the Replica Optimization Service. All these elements
are a part of the replication framework. Next, the Replica
Optimization Service calls the Cost Estimation Service that
is implemented in C++ using gSOAP for client-server com-
munication.

For simplicity, we created a command line interface for
the Replica Optimization Service where we can directly in-
voke the getSECost method. An example is given below
where we ask for access costs of a 1GB file on a given Stor-
age Element.

./edg-replica-optimization getSECost \
-s http://zeus07.cyf-kr.edu.pl:18001 \
-f pfn://zeus07.cyf-kr.edu.pl/f1GB.dat \
-h lxshare0343.cern.ch

Result:
SE cost: 1367.0 [sec]

The results are given in seconds and thus one can see
the estimated access time returned from the Cost Estimator.
Internally, the Replica Optimization Service then adds the
network costs for the given files and can thus determine the
entire access latency for a given file (according to Equation
2).

5 Experimental Results

In the following section we provide experimental results
of the replica selection process that is based on the in-
teraction of the Replica Optimization Service and the SE
Cost Estimation service. In more detail, a Replica Opti-
mization Service is deployed at CERN (Switzerland) and
interacts with three different storage systems located in
CYFRONET-AGH (Poland).

The cost estimation experiments have been performed on
three Storage Elements (SEs) - SE1, SE2, SE3 - keeping a
set of files, f10KB.dat, f100KB.dat, f1MB.dat, f10MB.dat,

6



f100MB.dat, f1GB.dat, with different sizes. These file-
names also correspond to logical file names (LFN). Fur-
thermore, for each of the LFNs, identical replicas exist at
different storage systems. The main goal is to identify the
optimal storage location (“best file”) for a given LFN.

Each SE is configured differently (cf. Table 1). Storage
SE1 has only disk drives, storage SE2 has disk drives and
connections via FTP link to the HSM system controlled by
an external machine. The last storage SE3 is connected to
another HSM system via a NFS link. The types of the links
are important in the estimation process due to differences
in transfer performance (e.g. NFS is significantly slower
than FTP). The location of the replicated files (fxxxxx.dat)
in these three machines is presented in Table 1: files are
partially replicated to the three existing SEs.

SE1 SE2 SE3
f10KB.dat disk n/a HSM cache

f100KB.dat disk n/a HSM cache
f1MB.dat n/a HSM tape n/a

f10MB.dat n/a disk n/a
f100MB.dat disk HSM cache HSM tape

f1GB.dat n/a HSM tape n/a

Table 1. File location in respective Storage El-
ements

The experiment was aimed to verify the correctness of
the integrated DataGrid Replica Manager (Reptor) with the
CrossGrid unified access cost estimation facilities. In more
detail, the cost function in Equation 1 is applied where only
the storage cost is minimized, i.e the network cost is ne-
glected in the experiments here. The Replica Manager can
then answer the question “listBestFile(LFN, relative loca-
tion)” where it returns the location of the replica with the
minimal access cost relative to a given location.

Given the replicas in Table 1, the obtained replica selec-
tion decisions of Reptor are shown in Table 2. Thus, for
each of the 6 LFNs, the “best” files are listed. For example,
for the LFN f100MB.dat the best location is SE2.

One of the most important steps in the Replica Manager
decision process is to evaluate the real data access cost on
the SE. The obtained access cost estimations of our exper-
iments and comparison with the reality are shown in Ta-
ble 3 (performed previously tests for the Legato DiskXten-
der HSM system, which are discused in detail in [13], show
that the exact estimation of the HSM system access cost is
difficult and sometimes errors can exceed 20%; the reason
of this is shortly discused in 3.4 section). Since all Storage
Elements are located in the same local area network, the
network cost for all of these storage elements is the same
and can be ignored here. Therefore, the decisions taken by

SE1 SE2 SE3
f10KB.dat the best n/a

f100KB.dat the best n/a
f1MB.dat n/a the best n/a

f10MB.dat n/a the best n/a
f100MB.dat the best

f1GB.dat n/a the best n/a

Table 2. Decision taken by the Replica Man-
ager based on the estimated access

the Replica Manager are in accordance with the cost esti-
mations given by the Cost Estimation service. Moreover,
comparing the real values shown in Table 3 with the replica
selection decisions taken by Reptor (see Table 2), demon-
strates that these decisions have been correct and the cost
estimations work properly.

SE1 SE2 SE3
f10KB.dat 1 / 1 (0) n/a 1 / 1 (0)
f100KB.dat 1 / 1 (0) n/a 1 / 1 (0)
f1MB.dat n/a 201 / 277 (27) n/a

f10MB.dat n/a 1 / 1 (0) n/a
f100MB.dat 8 / 8 (0) 10 / 9 (11) 627 / 802 (22)

f1GB.dat n/a 5478 / 5935 (7) n/a

Table 3. Estimated/Real access cost in sec-
onds rounded up (Estimated Error in %)

6 Related Work

Replica selection is a rather new field in Grid research
but has longer traditions in the Internet community. Thus,
most wide area replica research focuses on network-based
replica selection. For example, the Earth Science Grid
(ESG) [1] uses a network bandwidth for replica selection.
However, our past experience with Data Grids has shown
that mass storage systems are often the bottleneck rather
than network links due to the possible large range of access
latencies of tape systems.

The Storage Resource Broker (SRB) [14] takes a similar
approach as we do and currently uses storage latency rather
than network bandwidth as the main criteria for replica se-
lection. Thus, a disk-stored replica will be accessed first be-
fore trying a replica in a database and finally trying a replica
in an archival storage system. If more than one replica is in
the same latency category, SRB tries the one that is local
before trying a remote copy.

7



In Storage Resource Managers (SRM) [17] (a uniform
interface for secondary and tertiary storage systems) the no-
tion of replica selection is currently not introduced. SRM
provides an important interface for Grid storage systems
and is currently implemented by several projects within the
Grid community.

Further related work on optimization and performance
modeling of tertiary storage systems can be found in [16]
and [11].

7 Conclusions

In this paper we introduced the replica selection process
of the EU DataGrid Replica Manager based on storage ac-
cess estimations from a system developed within the EU
CrossGrid. We discussed the architecture of the Replica
Manager and the estimation function for a unified Grid stor-
age system which can be a disk subsystem or a Hierarchi-
cal Storage Manager with tape robots. We carried out a set
of benchmarks for estimating the access times of files lo-
cated at different levels in the storage hierarchy. The results
demonstrate that the estimates provide a good basis for the
Replica Manager to make efficient replica selection deci-
sions.

In the future we will extent our storage access estimator
to work also with other mass storage systems such as Castor
[3].

References

[1] B. Allcock, I. Foster, V. Nefedov, A. Chervenak, E. Deel-
man, C. Kesselman, J. Lee, A. Sim, A. Shoshani, B. Drach,
and D. Williams. High-Performance Remote Access to
Climate Simulation Data: A Challenge Problem for Data
Grid Technologies. In Supercomputing 2001, Denver,Texas,
November 2001.

[2] W. H. Bell, D. G. Cameron, L. Capozza, P. Millar,
K. Stockinger, and F. Zini. Design of a Replica Optimisation
Framework. Technical Report DataGrid-02-TED-021215,
CERN, Geneva, Switzerland, December 2002. EU DataGrid
Project.

[3] The CASTOR Project. http://www.cern.ch/
castor/.

[4] The CrossGrid Project. http://www.crossgrid.
org.

[5] CrossGrid - Development of Grid Environment for Interac-
tive Applications, 2001. EU Project, IST-2001-32243, Tech-
nical Annex.

[6] L. Dutka and J. Kitowski. Application of Component-Expert
Technology for Selection of Data-Handlers in CrossGrid. In
D. Kranzlmüller, P. Kacsuk, J. Dongarra, and J. Volkert, ed-
itors, Proc. 9th European PVM/MPI Users’ Group Meeting,
volume 2474 of Lecture Notes on Computer Science, pages
25–32. Springer, Sept. 29 - Oct. 2 2002.

[7] L. Dutka, R. Slota, and J. Kitowski. Component-Expert Ar-
chitecture as Flexible Environment for Selection of Data-
handlers and Data-Access-Estimators in CrossGrid. In M. T.
M. Bubak, M. Noga, editor, Proceedings Cracow Grid
Workshop ’02, pages 201–209, Cracow, Poland, December
11-14 2002 2002.

[8] L. Dutka, R. Slota, D. Nikolow, and J. Kitowski. Optimiza-
tion of Data Access for Grid Environment. In 1st European
Across Grids Conference, Lecture Notes in Computer Sci-
ence, Universidad de Santiago de Compostela, Spain, Febru-
ary, 13-14 2003. Springer. (in print).

[9] The European DataGrid Project. http://www.edg.
org.

[10] EDG-WP1. Definition of Architecture, Technical Plan and
Evaluation Criteria for Scheduling, Resource Management,
Security and Job Description. EU DataGrid Project. Deliv-
erable D1.2, September 2001.

[11] B. K. Hillyer and A. Silberschatz. On the Modeling and Per-
formance Characteristics of a Serpentine Tape Drive. In Pro-
ceedings of the 1996 ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systems, pages 170–
179, Philadelphia, Pennsylvania, May 1996.

[12] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger.
Replica Management with Reptor. Technical report,
DataGrid-02-TED-030408, Geneva, Switzerland, April
2003.

[13] D. Nikolow, R. Słota, J. Kitowski, and M. Dziewierz. Access
Time Estimation for Tertiary Storage Systems. In B. Monien
and R. E. Feldman, editors, Euro-Par 2002 Parallel Process-
ing, 8th International Euro-Par Conference Paderborn, vol-
ume 2400 of Lecture Notes in Computer Science, pages 873–
880, Philadelphia, Pennsylvania, August 2002. Springer.

[14] A. Rajasekar, M. Wan, R. Moore, G. Kremenek, and T. Gup-
till. Data Grids, Collections and Grid Bricks. In 20th IEEE/
11th NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST2003), San Diego, California, April
7-10 2003.

[15] O. Sandstå and R. Midstraum. Low-Cost Access Time
Model for Serpentine Tape Drives. In Proc. 16th IEEE Sym-
posium on Mass Storage Systems and the 7th NASA God-
dard Conference on Mass Storage Systems and Technolo-
gies, pages 116–127, San Diego, California, USA, March
1999.

[16] X. Shen, W. Liao, and A. Choudhary. Remote I/O Optimiza-
tion and Evaluation for Tertiary Storage Systems through
Storage Resource Broker. In Proceedings of IASTED Ap-
plied Informatics Conference, Innsbruck, Austria,, February
2001.

[17] Storage Resource Management (SRM) working group.
http://sdm.lbl.gov/srm-wg/.

[18] H. Stockinger. Database Replication in World-Wide Dis-
tributed Data Grids. PhD thesis, Institute of Computer Sci-
ence and Business Informatics, University of Vienna, Aus-
tria, Novemver 2001.

[19] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley,
New York, NY, 1998.

8


